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This paper deals with some mathematical aspects of magnetic resonance imaging (MRI). MRI is used in
diagnostic medicine to measure and display the cross section of, for example, a human organ. In this paper
we formulate the MRI-reconstruction problem and solve it after restating it as a moment problem in
a Hilbert space.

0. Introduction

In this paper we formulate and solve a reconstruction problem concerning magnetic
resonance imaging (MRI). MRI is a diagnostic method for measuring and displaying
the cross sections of human organs. We are particularly interested in the mathematical
aspects of MRI reconstruction in the case of the beating human heart.

In section 1 we explain a strategy, called retrospective synchronization, to measure
MRI data in the case of the beating human heart. At the end of this first section we
state the reconstruction problem for dynamic MRI

Section 2 is devoted to a moment problem in a Hilbert space, and Riesz bases are
used to obtain a solution. Section 3 solves the reconstruction problem after refor-
mulating it as a moment problem in an L?-space of vector-valued functions.

1. Magnetic resonance imaging

This section explains magnetic resonance imaging (MRI), which is a technique for
measuring and displaying the proton density of a cross section of a human organ. At
the end of this section a mathematical formulation of the problem is stated.

A well written book on the applications of MRI in biomedicine is the monograph
by Mansfield and Morris [12]. For those who are interested in the physics of MRI, the
paper [10] by Hinshaw and Lent is appropriate. Acquisition methods in the case of
a beating human heart are given by Bohning in [4].
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1.1. Acquisition of data

In this subsection we describe how the MRI data are obtained.

If we represent (in the time-independent case) the absolute value of the proton
density of a cross section by means of a function f: R* — R the MRI device (approxim-
ately) measures the Fourier coefficient of

J f(x, y)e =M du(x, y). (1.1)
D

Here u is the Lebesgue measure, and D = R? is the support of the function f.

In practice it is only possible to find the Fourier coefficient f of a function fat a
finite number of frequencies; to be somewhat more specific, k =0, ..., 255;
A =0,...,255 Assume that this sequence can be measured instantaneously (in
practice this may take from 2 up to 10 ms). One such sequence of measurements
{f(x, A)}c=0.....255, for fixed 4 is called a profile.

If we want to use MRI to measure and display cross sections of the beating human
heart, then we have to consider a function that not only depends on the variable (x, y)
but also on the time T. So, in the following we want to consider a function F(x, y, T),
which we can think of as the absolute value of the proton density of a cross section of
a beating heart. The reason why the function and the time are denoted by capitals will
become clear later.

Before describing an acquisition method that is used in practice for measuring the
Fourier transform of the proton density of a beating heart, we first give some
terminology.

(i) An R-pulse is the electric pulse in the heart that marks the beginning of
a heartbeat. It is recorded by means of an ECG, simultaneously with the
measurements.

(i) A RR-interval is the duration (in seconds) between two consecutive R pulses.

(ili) A unit RR-interval is an RR interval of one unit time length, say one second,
which will be used as a reference interval, this interval is called J.
(iv) An heart phase is a phase in the periodic movement of the heart.

We explain an acquisition method, which we shall call retrospective synchronization,
as described by Bohning [4] under the name retrospective gating. First introduce
a functionf: R* x J — R, which we define as the standard heartbeat. Here J is the unit
RR interval. We assume that the heart, during each heartbeat, is a rescaled copy of the
function f in time; this rescaling should be based on a biological model of the
movement of the heart. In order to give an example, we assume the rescaling to be
linear. Suppose the kth R-pulse is measured at the time r, for k = 1,2, ... . Assume
that the proton density in a cross section of the beating heart, F(x, y, T), is givén in
terms of f as

T — Iy

F(x,y, T) :=f(x, Vs ———), (1.2)
P+ — Tg

where Te[ry, ry+ ). This so-called dynamic case is more complex than the static case;

in the dynamic case we measure the Fourier coefficient of a function F at a certain

time T, F(x, 4, T;). The profile that is measured for fixed 1, at time T3, is denoted as
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{f (%, 4, Ti)}x=0...255- In order to reconstruct the function F at time 7; by means of
the Fourier inversion formula, we should measure the 256 profiles (ie. for
A=0,...,255)at the time T;. In practice one cannot measure quickly enough with
MRI to obtain all these profiles during one heart phase, but they are obtained during
several RR intervals. The aim of MRI in the dynamic case is not to give a real-time
reconstruction of the beating heart during different RR intervals, but to reconstruct
the standard heartbeat. That is, we have to translate our measurements in terms of the
function f. In the case of linear rescaling this can be done as in formula (1.2), if
T;e[re, rv+1) then we define

T, —r
t; = : k

Fr+1 — Tk

(1.3)

and f (x, A, t;) = F (x, A, T;). The variable ¢; lies in the unit heart interval. The rescaling
from T; to t; is called projection onto the unit heart interval. After this the ¢; are
reordered to obtain an increasing sequence.

The profiles are obtained as follows. We fix A and we measure the profile
{F(x, 4, Ty)}x=0...255, briefly denoted as { F(k, A, T;)}, at time T. After some time
(this may be from 10 up to 200 ms) we again measure a profile for 1, at time T, etc; the
time at which the measurements take place is recorded. After we have obtained a fixed
number of profiles (in practice this may be up to 80) the value of 1 is increased. If an
R pulse has occurred, it is registered, so that, afterwards, the measured profile can be
assigned to the corresponding heart phase. This is done as follows.

(1) The length of the heartbeat (i.e. the RR interval), in which the measurement
under consideration occurred is computed. The time of a measurement, relative
to the unit RR interval is computed, for example, in the case of linear rescaling
by (1.3), and the data are projected onto this interval. (cf. Fig. 1.) We remark that
the t; depend on the value of 4, in the sense that other values for 1 will give rise to
another arrangement of the ¢; on the unit RR interval. To express this depend-
ence we shall denote the time as t;(1).

R — pulse

Ta Tq T5 TG T7
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R — pulse
R — pulse e
| I A=0
| i 1 i
/i\ izts tqts tG 124
phase 1

Fig. 1. Diagram showing how the measurements are projected onto a unit RR-interval
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(2) If we want to display the heart at several phases, the unit RR interval is
subdivided into several parts (see Fig. 1, for the case when the RR interval is
subdivided into four parts). All profiles on the unit RR interval between phase
1 and phase 2 are, in practice, considered to be measured at phase 1. All
measurements between phases 2 and 3 are considered to be measured at phase 2,
etc. If several measurements belong to phase n, then the average of these is
assigned to phase n, that is in practice one uses interpolation by zeroth-order
splines to obain data at the phases. We want to improve this reconstruction
algorithm by using another type of interpolation. In order to do this, definition
of the problem is given in mathematical terms, in the following subsection.

1.2. Definition of a mathematical problem

Before giving a definition of the problem, we first introduce some notation. We
change our conventions slightly by writing x and « instead of the pairs (x, y) and (x, 4).
Let [ and [ be finite or countable index sets, for example, K := {0, ..., 255} or
K:=272% and l:={1,...,I}, or 1:=Z. Let DcR? be the unit square
D = [ — =, ]% Suppose the object to be measured has support in this interval D. The
function

f:DxR3(x,t)>f(x,1)

represents a two-dimensional cross section of the beating heart, during a standard
heartbeat. The Fourier coefficient of f, taken with respect to the variable x is defined
by

-~

flx, t):= i Lf(x, t)e”** du(x).

The data { f (x, t:(k)) }cex are measured, for fixed k, at the rescaled time ¢;(x), for iel.
Suppose we have measured

Gei =1 1(x), (14)
for kel and iel. The problem is to find a function f: D x R — R such that
06, 109) = g (L.5)

for kel, and iel. We refer to problem (1.5) as a mixed Fourier-interpolation
problem.

In the following section we solve this mixed problem for both finite and countable
index sets [ and 1.

2. The moment problem in Hilbert space

This section considers a moment problem in a Hilbert space, and uses Riesz bases to
obtain a solution.

The theory of moment problems is dealt with in the following books. Akhiezer [1]
gives an overview of several types of moment problems. The theory of the generalized
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inverse to the moment problem in a Hilbert space is applied by Bertero [3]. Young
[16] uses the theory of Riesz bases and Riesz-Fischer systems applied to the moment
problem in a Hilbert space. The moment problem in reproducing kernel Hilbert
spaces is considered by Shapiro [15] and Landau [11] gives an overview of the
applications and theory of moment problems.

The notational convention used throughout this paper is as follows. The Fourier
transform of a function fis denoted by f. The frequency parameters are written as
Greek symbols, like &, k, the time variable is ¢ and z denotes complex number. The
inner product of a Hilbert space 4 is denoted by <, >,. The index sets K and [ are
equal to Z* and Z, respectively, unless stated otherwise. {h;};o; and {e,}ccx are
orthonormal bases for # and L?(D), respectively.

2.1. Interpolation as a moment problem

In this subsection we consider interpolation and moment problems. It turns out
that an interpolation problem is a special type of moment problem.

Define the space [([) as the set of all sequences of complex numbers {g;};; such
that

ligla:= 3 19:1% < 0.

iel

Suppose we have measured a sequence of complex numbers {g;} € %(1) at the points in
time t;. The interpolation problem is to find a function f: R — R that satisfies

V@) ftin/r) = g;, Viel. .1

(The reason for the factor n/r will become clear at the end of this section.) Furthermore
we want the function f to lie in the Hilbert space of band-limited functions, denoted
by P,. Denote the support of a function by supp.

Definition 2.1. P, := { fe L*(R)|suppf< [—r,r]}.
P, becomes a Hilbert space with the inner product

(La>P,:= j FO70 4.

By the theorem of Paley-Wiener any fe P, can be extended to an analytic function
such that

If@) <e™ i fllp, VzeC. 2.2

By the above inequality, it follows that convergence in P, implies uniform convergence
on horizontal strips in C.

{\/ (r/m)sinc,(t — nm/r)},e; is an orthonormal basis for P,, where the sinc function is
given by

sin(rt)/rt, t#0,

sinc,(t) := { 1 P20
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The point evaluation at t; can be written in terms of a sinc function. Let

Q.= \/(F/H)Sincr( t = tin/r)’
then for all fe P,,

Y 9o, = /@) fempn). 23)
With this equality the interpolation problem is a special kind of moment problem in

a Hilbert space 3, which can be formulated as follows. Let {¢;}:<; be a sequence of
vectors in #. Suppose {g;}&l*(l). We want to find an element f of 5# such that

{fr@idw =91 Viel (2.4)

2.2. Riesz bases

In this section we find a solution to the moment problem in a Hilbert space #,
which is a solution to the interpolation problem (2.1) in the case that s# = P,.

Without conditions on the system {¢;} the moment problem need not have
a solution. A sufficient condition for (2.4) to have a solution is that { ¢, } is a Riesz basis
(cf. Gohberg and Krein [8], or Young [16]).

Definition 2.2. A system of vectors {@;}ie; © H# is a Riesz basis if there is a bounded
linear invertible operator T on # such that

To;=h;, Viel

A linear operator T is called invertible if its inverse, denoted by T ~?, exists and is
bounded. A Riesz basis { ¢, };c; possesses a unique biorthogonal system, {; };, that is

IR o, Vi jel.
It can be checked that
Vi =T*h;, Viel.

Here T and h; are as in Definition 2.2 and T* is the adjoint of T {y;} is a Riesz basis,
which can also be computed in terms of the bounded and invertible Gram matrix,

Gij:= <(pj’ <0i>.)f’ Vi,jeﬂ,
as

Yi=Y (G )9, Viel (2.5)
Jjel

Note that this formula holds both in the case of finite and countable index sets. If
a system of vectors {¢;} = # is linearly independent and finite, then it is a Riesz basis
for its linear span, #; := span{@; };c-

Throughout the remainder of this paper the system {¢;};c; is a Riesz basis for
s and its associated biorthogonal system is denoted by {/;}ier.

Any fe s can be uniquely written as

f= Z {LH@Dw Vi

iel
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Hence the moment problem (2.4) has the unique solution

=% g 2.6)
iel

In the case that { ¢;} is a finite linearly independent system of vectors in #, which is
not a basis for s, then f (formula (2.6)) is a solution to the moment problem. It is not
unique, since other solutions can be obtained by adding elements to f, which are
orthogonal to span{¢;};.;- However, then the solution with the minimum norm
among all the solutions is unique. In the following we give two examples of the
solutions to the interpolation problem (2.1). The first deals with the case of a finite
index set [ and the second with an infinite (i.e. countable) index set. The theory of Riesz
bases is not needed in the finite-dimensional case, but the formulae are in this case the

same, and we include an example for illustration.

Example 2.1. Let | be a finite index set, say | = {1, ..., I} and let t; be a sequence of
distinct real numbers, with iel. Let r = n. Consider the moment problem (2.1). We
want to find a solution fe P, to (2.1) of minimum norm. If fe P, then we have

{f(0) sineg(* — 1) Dp, = f (1)

If the ¢; are distinct, then { ¢, },= .. is linearly independent, so it is a Riesz basis for its
linear span #; < P,. The minimum-norm solution to (2.1) in P, is given by (2.6).
Y, can be computed with (2.5). Here G is defined by

Gij:= (@, Pip, = SInC,(t; — t;), Vi, jel
The following example is concerned with an infinite sequence of vectors in P,.
Example 2.2. Let | = Z. By Young [16], p. 42, Theorem 14 we have that { ¢; };c,, given by
@; = sinc,(* — t;),
is a Riesz basis for P, if ¢; is a sequence of real numbers such that
[t — i <a< 1/4, 2.7
for all iel. The unique solution fe P, to the interpolation problem (2.1) is
f= Z:ﬁ gi¥i,

where

Y= Z (G—l)ijq)r

jel
The Gram matrix G is in this case,
Gij={@j, 9;iYp = sinC,(t; — t;), Vi, jel.

If the t; satisfy (2.7), then it follows by the proof of Young [16], p. 38, Theorem 10
that there exists a bounded linear invertible operator 7 on P, such that

Tqu = hi, Vieﬂ,
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and

1 _
ITI <75 ITTHI<1+4

where 4 :=1 — cosno + sinmo,

Q= \/ (r/m)sinc,(* — t;nfr), and h;:= \/ (r/m)sinc,(* — int/r).

3. The moment problem in an L2-space of vector-valued functions

This section gives the mathematical theory to solve (1.5) by restating it as a moment
problem in an L2-space of vector-valued functions. This space, denoted by L*(D, #')
consists of functions that map elements from D into a Hilbert space 5#. We extend the
theory of Riesz bases to L2(D, # ) and solve the mixed Fourier-interpolation problem
(1.5).

Subsection 3.1 introduces the space L?(D, #). Riesz bases in this space are
considered in subsection 3.2. In subsection 3.3 we use Riesz bases to solve a moment
problem in L?(D, #) and subsection 3.4 applies the results in the case that # = P,.

3.1. The space L*(D, )

In this subsection we consider L2-spaces of functions that have values in a separable
Hilbert space #. For a more detailed discussion about these L*-spaces, we refer to
Balakrishnan [2] and Hille and Phillips [9].

A function that maps D into J is called a vector-valued function. The notion of the
measurability of such a function can be defined in terms of the Lebesgue measurability
of complex-valued functions.

Definition 3.1. A function f: D — i, is called measurable, if for each he 5 the function
x = { f(x), h>y is Lebesgue measurable.
By Balakrishnan [2], the integral

L /()13 du(x), (3.1)

is well-defined in Ru { oo }.

Identifying the functions that are equal up-to a set of measure zero, we define the
space L2(D, ) as the collection of measurable vector-valued functions such that (3.1)
is finite. We write %" = L*(D, #) for short, and introduce the inner product { , >,
on %, by

{Lgdw:= L CS(x), g(x)) dpe(x).

It is proven in Balakrishnan [2], p. 134 that %" with this inner product is a Hilbert
space, with orthonormal basis {e, h; }cx. ict» if {€. } and {h;} are orthonormal bases for
L*(D) and #, respectively. By ‘e, h; we denote the function that maps x € D onto the
element e, (x) h;e 5.
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For fe L*(D, #) an # -valued integral of f, the Pettis integral, denoted by
(s”/’)j S (x) du(x),
D

can be defined by its action on he #,

<(9’) Lf(X) du(x), h>f = L CF ) R dp(x).

Denote the (generalized) Fourier coefficient of a vector-valued function f, by
ﬁ@:&mijQWNMﬂ (3.2)
D

Note that f : K = 5. For the (generalized) Fourier transform Parseval’s relation and
an inversion formula are obtained by Foias and Nagy [6].

Proposition 3.2. Let # be a separable Hilbert space. For any fe L*(D, #) the follow-
ing identities hold:

113 =3 13,

kel

/=3 fwe. 3.3)

kel

Here (3.3) converges in the norm topology.

3.2. Riesz bases in L*(D, 3#)

In the previous section it turned out that {e.h;} is an orthonormal basis for
L*(D, #). For a Riesz basis a similar statement holds, under some additional
conditions.

If {@.:}ic1 Is @ Riesz basis in # for all k e KK, then by definition, there exists for each
k€K a bounded linear invertible operator T, on J#, with

TKQDK,,' = hi’ Vel
A family { T },«; of operators is uniformly bounded if sup, || T, || < oo.

Proposition 3.3. Let {¢,;}ict be a Riesz basis in #, for all ke . If { T, }iex and
{T7'}cex are uniformly bounded families, then there is a bounded linear invertible
operator U on W~ such that

Ule,pr;) = ehi, Vrel, Viel
So {e. ¢} is a Riesz basis for #'.

Proof. Suppose that for k € K fixed, { ¢, ;} is a Riesz basis for 5#, such that we can find
a family of uniformly bounded linear invertible operators, for which it holds that for ke K,

T (@xi) = h;, Viel

Here {h;} is an orthonormal basis for #. Note that we may choose for each ke [ the
same orthonormal basis {h; }, because the definition of Riesz bases does not depend on
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the choice of this orthonormal basis. Define % on %~ by

Uf=3 T.[fx)]e,.

kel

Then % is a bounded linear operator on #". For, applying Parseval’s identity to
UfeW,

NZfld = 3 1wf) )%

xelk
= YT 0% < T NTP 1N < (SUP I Tx”2> L1530
ke K kel K

Hence % is bounded, since { T} },cx is uniformly bounded. The inverse of % is

=3 T [f(9)] e

xelk

For, (%f) () = T.[ f(x)] and

wNuf)y=3 T [f) ()] ex

kel
=Y T[T f()le= Y f(K)ec =
kel Kelk

In a similar manner we check that % (% ~'(f)) = f. The inverse, % !, is also bounded,
because the family { 7 ! },.x is uniformly bounded. Finally, since

W [ex9xi]) (K) = T gri = hi,
it follows that
U, i) = ech;, Vrel iel.
Hence {e, ¢, ;} is a Riesz basis for #". O

Note that for a finite index set K the conditions of this proposition are trivially
satisfied. The condition on the uniform boundedness cannot be missed, since
a counterexample can be found if { 7,,} or { Ty '} are not uniformly bounded (e.g,
take T, = (1/x)Id,, where Id is the identity on ).

We now give an example which shows that there indeed exist Riesz bases that
satisfy the conditions of Proposition 3.3.

Example 3.1. Let A be the Hilbert space P,, let I = Z?, and | = Z. Suppose we have
a sequence of real numbers ¢, ; such that for arbitrary x e K

Viel, |t.;—i<a<$. (34)
Then we know by example 2.2 that for fixed ke K,

{Jr/mysine,(t — teim/r)}ie
is a Riesz basis, that is there exists a linear bijection T, such that

TK(\/(r/n) sinc,(* — t;m/r)) = \/(r/n) sine,(* — in/r), Viel.
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Furthermore, for ke K fixed
T <1/ =4), ITH<T+4,

with A =1 — cosma + sinnx < 1. Hence the families of operators {7, },.x and
{T<'}cex are uniformly bounded. By Proposition 3.3

(et [N/ (r/m)sing, (t — tm/r) ] her e
is a Riesz basis in L?( D, P,).
The biorthogonal system of {e, ¢, ;} has the following form. Suppose { ¢, ;} satisfies

the conditions of Proposition 3.4. Suppose that {i, ; }:.; is the biorthogonal system of
{@x.i}ic: for each k e K. By Proposition 3.4 we have that

{en (px‘i}xeh,isll
is a Riesz basis for #". Its (unique) biorthogonal system is

{ex '//x.i}xelK,iella

which is also a Riesz basis for #".

3.3. The moment problem in L*(D, #)

Consider the following moment problem in L*(D, #°). Suppose we are given
a sequence of complex numbers {g,;} €*(KK x ). Let {¢,.:)ic: be a Riesz basis in 5,
for each kelK, which satisfies the conditions of Proposition 3.4. We want to find
a function fe #” such that

(fiex@rivw = gxi» VKeEK, Viel (3.5)
We first prove the following useful equality, for arbitrary he 5,

(frechyy = L (S (), ex(x) h )y du(x)
= L L) B ex) du(x) = L (S (x) ee(x), B du(x)

= < Lf(x) 2 (%) dp(x), h>{ =K, ).

and so,

(frechdy = (f (9, h)or, VheSH. (3.6)
By (3.6) problem (3.5) can be solved by finding an element f of #” such that

), Qeidw = Ges» VKEK, i€l 3.7

The method suggested by (3.7) to solve (3.5) is as follows. For each kel find
a solution ¢, € & to the problem

(Cs Ouyivw = Gris Viel (3.8)

¢, 1s of the form

Cx = Z gk,i'#x,i' (39)

iel
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Here for fixed k€ K {/,;}:c: is the biorthogonal system of { ¢y ;}:c:, given by

Vi = Y, (G) ™)y @ - (3.10)

Jjel
The Gram matrix G(k) is (for ke K)
(G(K))ij:= { Pr.j» Prives Vi jEL (3.11)

If we let the c, play the role of the Fourier coefficients of the solution fto (3.5), fis given
by Fourier inversion,

=73 ceex.
kel
Problem (3.5) can also be solved directly. Let {¢,,;} satisfy the conditions of
Proposition 3.3, then {e, ¢, ;}, and its biorthogonal sequence {e, ¥, } are Riesz bases.
Hence any element of #~ can then be written as

f= Z <f; €y (Px,i>#‘ [ l//K,i-
The unique solution is then

f= Z gk,iexwx.i-

xelK,iel

We thus have proven the following theorem.

Theorem 3.4. Let {¢,;}ic; (for all k € KK) be a Riesz basis for # such that it satisfies the
conditions of Proposition 3.4. Then

=73 ceen (3.12)
xelk
is a unique solution to (3.5), which lies in #". Here the sequence c, in 3 is given by (3.9).
The following proposition is included to characterize the solution in practical
situations where the index sets K and [ are finite.

Proposition 3.5. Let K and | be finite index sets. Suppose that for all k € I, the sequence
{@y.i}ie1 is linearly independent in 5. Then the unique solution of minimum norm to the
problem (3.5) is given by (3.12).

Proof. Let {e,} and { ¢, } satisfy the above conditions. If, for all k€ I, {@y,i}icx IS
linearly independent in #, then {e, @i }xcx.ie: 18 @ linearly independent system in %"
Hence, it is a Riesz basis for its linear span. Then it follows by subsection 2.1 that the
minimum-norm solution to the moment problem (3.5) is given by 3.12. O

3.4. The moment problem in L*(D, P,)

In the preceding paragraphs we introduced the space L?*(D, »#), where # is
a separable Hilbert space. In this section we restrict ourselves to the case that H = P,,
in order to give a solution to the mixed Fourier-interpolation problem (1.5).

In the following we shall denote a function fe L*(D, P,), as f(x, t). Note that for
xeD fixed t > f(x, t) is an element of P,. Its Fourier transform is denoted by f(x, t).
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With this notation, by (2.3), and the definition of the P,-valued integral, (3.2) can be
rewritten as

-~

f(x,t)=§ﬁjbf(x,t)e”i"xdu(x). (3.13)

We now show that (1.5) is a special type of moment problem in L*(D, P,). Let

Pp i 1= \/ (r/m)sinc, [t — t;(x) 7/r].
With this notation we have for any fe L?(D, P,), using (3.13), (3.6) and (2.3)

repeid = [/ (@)1 f e, tilx) m/r). (3.14)

Hence, the problem (1.5) can be reformulated as the moment problem (3.5), up to
a change of scale.

In the following we give examples of solutions to the moment problem (1.5), as an
application of Theorem 3.5 and Proposition 3.6. Example 3.7 deals with the case of
countable index sets | = Z and K = Z2.

Example 3.2. Let | = Z and K = Z2. Suppose that for all x € [, we have a sequence of
real numbers t;(k) such that

li— (K| <a<i, Viel
By example 3.1 it follows that, for fixed ke lK,
@i -= sinc.[t — ti(k)],

for iel, is a Riesz basis in P,. We know that the unique solution to problem (3.5) is
given by (3.12),

‘//x.iz Z (G(x)~ )ijq)x,j’
Jjel

and for ke K fixed, the Gram matrix G(x) is
(G(K));; = sinc, [t;(x) — t;(x)], Vi, jel. (3.15)

The main issue in the computation of the biorthogonal system {y,;} is the
inversion of the Gram matrices (for ke K) G(x). This inversion in the infinite-
dimensional case will be considered in a future publication. We note for practical
purposes that the numerical inversion of the Gram matrix in example 3.2 is the time
consuming part in the computation of the solution of the reconstruetion problem.

In the previous example the type r of the space P, is chosen equal to n. In the case
that both index sets are finite, say K = {0, ..., 255}*> and | = {1, ..., I}, we choose
r in relation to the spacing of the time points. We assume only that the time points
{t:(x) }1c1 are distinct (for x e K).

In formula (3.14) the time points at which the data {g, ;}cex,ic1 are measured, are
rescaled by a factor n/r. In the following example we do not know the type r in
advance, but we want to determine r according to the spacing of the time points.
Assuming the data {g,;} are measured at the time points {s;(x)}, we choose r as
follows.
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Example 3.3. For each k€K we first choose

T
=1 _ liel .
i ‘“f{lsi(x)—siﬂ(xn ‘e }

Note that if the consecutive sampling points were lying a distance

hy:=sup{|s;() — 501 ()] li=1,2, ..., 1 =1}

apart, then h, would be the Nyquist rate that corresponds to the type r, (cf. Natterer
[13], p. 56). If we define r := sup{r,|(x)e K}, then P, < P,. Define t;(k) = s;(x) /7.
Since for each ke K the finite sequence of vectors

Py,i = (rx/n) Sincrx [t - ti(K) TC/T,C],

foriel, liesin P, , it also lies in the larger space P,. A solution to (3.5) in L*(D, P,)
may be given as follows. Let {t;(k)};oy, for all kelK, be a sequence of distinct,
arbitrarily chosen, real numbers. Let [ = {1,2,...,I} and put

@i i = (re/m)sine, [t — ti(x) n/r],
which is, for ke K fixed, a linearly independent system in P,. Define
q)x,i L= ek Pylis

which is a linearly independent system in L?(D, PP,). By Proposition 3.6 the minimum-
norm solution fespan{®, ;}, which satisfies (3.5),

(S Qive, = gin VREK, Viel,

is given by formula (3.12). The rest is the same as in example 3.2. The biorthogonal
vectors ¥, ; are given by (3.10) and the Gram matrix is defined by (3.15).

3. Conclusions and additional remarks

In this paper we have solved the mixed Fourier-interpolation problem by means of
Riesz bases. The idea was to perform for each frequency k a sinc interpolation along
the time axis. The (minimum-norm) solution to (1.5) is obtained by means of a Fourier
inversion. The reason why we do not have to perform interpolation in the frequency
plane is the orthogonality of the exponentials {€™*}, .. If we had a priori information
about the measured object, expressed in terms of a particular norm, then the exponen-
tials need not be an orthonormal system and the situation will be different. In such
a case we have to perform interpolation in the frequency plane in order to obtain the
minimum-norm solution.

Instead of using sinc interpolation, one could use spline interpolation, which will
give good results in the practice of MRI. The application of the examples (and

algorithms) to test images, as well as to real MRI data, will be considered in a future
publication.
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